How reliable is carbon dating. Doesn’t Carbon-14 Dating Disprove the Bible?.



How reliable is carbon dating

How reliable is carbon dating

Therefore it should come as no surprise that creationists at the Institute for Creation Research ICR have been trying desperately to discredit this method for years.

They have their work cut out for them, however, because radiocarbon C dating is one of the most reliable of all the radiometric dating methods. This article will answer several of the most common creationist attacks on carbon dating, using the question-answer format that has proved so useful to lecturers and debaters.

How does carbon dating work? Cosmic rays in the upper atmosphere are constantly converting the isotope nitrogen N into carbon C or radiocarbon.

Living organisms are constantly incorporating this C into their bodies along with other carbon isotopes. When the organisms die, they stop incorporating new C, and the old C starts to decay back into N by emitting beta particles.

The older an organism's remains are, the less beta radiation it emits because its C is steadily dwindling at a predictable rate. So, if we measure the rate of beta decay in an organic sample, we can calculate how old the sample is. C decays with a half-life of 5, years. Kieth and Anderson radiocarbon-dated the shell of a living freshwater mussel and obtained an age of over two thousand years.

ICR creationists claim that this discredits C dating. How do you reply? It does discredit the C dating of freshwater mussels, but that's about all. Kieth and Anderson show considerable evidence that the mussels acquired much of their carbon from the limestone of the waters they lived in and from some very old humus as well.

Carbon from these sources is very low in C because these sources are so old and have not been mixed with fresh carbon from - page 24 - the air. Thus, a freshly killed mussel has far less C than a freshly killed something else, which is why the C dating method makes freshwater mussels seem older than they really are.

When dating wood there is no such problem because wood gets its carbon straight from the air, complete with a full dose of C The creationists who quote Kieth and Anderson never tell you this, however. A sample that is more than fifty thousand years old shouldn't have any measurable C Coal, oil, and natural gas are supposed to be millions of years old; yet creationists say that some of them contain measurable amounts of C, enough to give them C ages in the tens of thousands of years.

How do you explain this? Radiocarbon dating doesn't work well on objects much older than twenty thousand years, because such objects have so little C left that their beta radiation is swamped out by the background radiation of cosmic rays and potassium K decay.

Younger objects can easily be dated, because they still emit plenty of beta radiation, enough to be measured after the background radiation has been subtracted out of the total beta radiation. However, in either case, the background beta radiation has to be compensated for, and, in the older objects, the amount of C they have left is less than the margin of error in measuring background radiation. As Hurley points out: Without rather special developmental work, it is not generally practicable to measure ages in excess of about twenty thousand years, because the radioactivity of the carbon becomes so slight that it is difficult to get an accurate measurement above background radiation.

K decay also forms plenty of beta radiation. Stearns, Carroll, and Clark point out that ". This radiation cannot be totally eliminated from the laboratory, so one could probably get a "radiocarbon" date of fifty thousand years from a pure carbon-free piece of tin. However, you now know why this fact doesn't at all invalidate radiocarbon dates of objects younger than twenty thousand years and is certainly no evidence for the notion that coals and oils might be no older than fifty thousand years.

Creationists such as Cook claim that cosmic radiation is now forming C in the atmosphere about one and one-third times faster than it is decaying. If we extrapolate backwards in time with the proper equations, we find that the earlier the historical period, the less C the atmosphere had.

If we extrapolate - page 25 - as far back as ten thousand years ago, we find the atmosphere would not have had any C in it at all.

If they are right, this means all C ages greater than two or three thousand years need to be lowered drastically and that the earth can be no older than ten thousand years. Yes, Cook is right that C is forming today faster than it's decaying.

However, the amount of C has not been rising steadily as Cook maintains; instead, it has fluctuated up and down over the past ten thousand years. How do we know this? From radiocarbon dates taken from bristlecone pines. There are two ways of dating wood from bristlecone pines: Since the tree ring counts have reliably dated some specimens of wood all the way back to BC, one can check out the C dates against the tree-ring-count dates.

Admittedly, this old wood comes from trees that have been dead for hundreds of years, but you don't have to have an 8,year-old bristlecone pine tree alive today to validly determine that sort of date. It is easy to correlate the inner rings of a younger living tree with the outer rings of an older dead tree. The correlation is possible because, in the Southwest region of the United States, the widths of tree rings vary from year to year with the rainfall, and trees all over the Southwest have the same pattern of variations.

When experts compare the tree-ring dates with the C dates, they find that radiocarbon ages before BC are really too young—not too old as Cook maintains. For example, pieces of wood that date at about BC by tree-ring counts date at only BC by regular C dating and BC by Cook's creationist revision of C dating as we see in the article, "Dating, Relative and Absolute," in the Encyclopaedia Britannica.

So, despite creationist claims, C before three thousand years ago was decaying faster than it was being formed and C dating errs on the side of making objects from before BC look too young, not too old. But don't trees sometimes produce more than one growth ring per year? Wouldn't that spoil the tree-ring count? If anything, the tree-ring sequence suffers far more from missing rings than from double rings. This means that the tree-ring dates would be slightly too young, not too old.

Of course, some species of tree tend to produce two or more growth rings per year. But other species produce scarcely any extra rings. Most of the tree-ring sequence is based on the bristlecone pine. This tree rarely produces even a trace of an extra ring; on the contrary, a typical bristlecone pine has up to 5 percent of its rings missing.

Concerning the sequence of rings derived from the bristlecone pine, Ferguson says: In the growth-ring analyses of approximately one thousand trees in the White Mountains, we have, in fact, found no more than three or four occurrences of even incipient multiple growth layers. Hence at least some of the missing rings can be found. Even so, the missing rings are a far more serious problem than any double rings. Other species of trees corroborate the work that Ferguson did with bristlecone pines.

Before his work, the tree-ring sequence of the sequoias had been worked out back to BC. The archaeological ring sequence had been worked out back to 59 BC. The limber pine sequence had been worked out back to 25 BC. The radiocarbon dates and tree-ring dates of these other trees agree with those Ferguson got from the bristlecone pine.

But even if he had had no other trees with which to work except the bristlecone pines, that evidence alone would have allowed him to determine the tree-ring chronology back to BC. See Renfrew for more details.

So, creationists who complain about double rings in their attempts to disprove C dating are actually grasping at straws. If the Flood of Noah occurred around BC, as some creationists claim, then all the bristlecone pines would have to be less than five thousand years old. This would mean that eighty-two hundred years worth of tree rings had to form in five thousand years, which would mean that one-third of all the bristlecone pine rings would have to be extra rings.

Creationists are forced into accepting such outlandish conclusions as these in order to jam the facts of nature into the time frame upon which their "scientific" creation model is based.

Barnes has claimed that the earth's magnetic field is decaying exponentially with a half-life of fourteen hundred years. Not only does he consider this proof that the earth can be no older than ten thousand years but he also points out that a greater magnetic strength in the past would reduce C dates.

Now if the magnetic field several thousand years ago was indeed many times stronger than it is today, there would have been less cosmic radiation entering the atmosphere back then and less C would have been produced. Therefore, any C dates taken from objects of that time period would be too high. How do you answer him? Like Cook, Barnes looks at only part of the evidence.

What he ignores is the great body of archaeological and geological data showing that the strength of the magnetic field has been fluctuating up and down for thousands of years and that it has reversed polarity many times in the geological past. So, when Barnes extrapolates ten thousand years into the past, he concludes that the magnetic field was nineteen times stronger in BC than it is today, when, actually, it was only half as intense then as now. This means that radiocarbon ages of objects from that time period will be too young, just as we saw from the bristlecone pine evidence.

But how does one know that the magnetic field has fluctuated and reversed polarity? Aren't these just excuses scientists give in order to neutralize Barnes's claims? The evidence for fluctuations and reversals of the magnetic field is quite solid. Bucha, a Czech geophysicist, has used archaeological artifacts made of baked clay to determine the strength of the earth's magnetic field when they were manufactured.

He found that the earth's magnetic field was 1. See Bailey, Renfrew, and Encyclopedia Britannica for details. In other words, it rose in intensity from 0. Even before the bristlecone pine calibration of C dating was worked out by Ferguson, Bucha predicted that this change in the magnetic field would make radiocarbon dates too young. This idea [that the fluctuating magnetic field affects influx of cosmic rays, which in turn affects C formation rates] has been taken up by the Czech geophysicist, V.

Bucha, who has been able to determine, using samples of baked clay from archeological sites, what the intensity of the earth's magnetic field was at the time in question. Even before the tree-ring calibration data were available to them, he and the archeologist, Evzen Neustupny, were able to suggest how much this would affect the radiocarbon dates.

There is a good correlation between the strength of the earth's magnetic field as determined by Bucha and the deviation of the atmospheric radiocarbon concentration from its normal value as indicated by the tree-ring radiocarbon work. As for the question of polarity reversals, plate tectonics can teach us much. It is a fact that new oceanic crust continually forms at the mid-oceanic ridges and spreads away from those ridges in opposite directions.

When lava at the ridges hardens, it keeps a trace of the magnetism of the earth's magnetic field. Therefore, every time the magnetic field reverses itself, bands of paleomagnetism of reversed polarity show up on the ocean floor alternated with bands of normal polarity.

These bands are thousands of kilometers long, they vary in width, they lie parallel, and the bands on either side of any given ridge form mirror images of each other. Thus it can be demonstrated that the magnetic field of the earth has reversed itself dozens of times throughout earth history.

Barnes, writing in , ought to have known better than to quote the gropings and guesses of authors of the early sixties in an effort to debunk magnetic reversals. Before plate tectonics and continental drift became established in the mid-sixties, the known evidence for magnetic reversals was rather scanty, and geophysicists often tried to invent ingenious mechanisms with which to account for this evidence rather than believe in magnetic reversals.

Video by theme:

Carbon Dating Flaws



How reliable is carbon dating

Therefore it should come as no surprise that creationists at the Institute for Creation Research ICR have been trying desperately to discredit this method for years. They have their work cut out for them, however, because radiocarbon C dating is one of the most reliable of all the radiometric dating methods. This article will answer several of the most common creationist attacks on carbon dating, using the question-answer format that has proved so useful to lecturers and debaters.

How does carbon dating work? Cosmic rays in the upper atmosphere are constantly converting the isotope nitrogen N into carbon C or radiocarbon. Living organisms are constantly incorporating this C into their bodies along with other carbon isotopes. When the organisms die, they stop incorporating new C, and the old C starts to decay back into N by emitting beta particles. The older an organism's remains are, the less beta radiation it emits because its C is steadily dwindling at a predictable rate.

So, if we measure the rate of beta decay in an organic sample, we can calculate how old the sample is. C decays with a half-life of 5, years. Kieth and Anderson radiocarbon-dated the shell of a living freshwater mussel and obtained an age of over two thousand years. ICR creationists claim that this discredits C dating. How do you reply? It does discredit the C dating of freshwater mussels, but that's about all. Kieth and Anderson show considerable evidence that the mussels acquired much of their carbon from the limestone of the waters they lived in and from some very old humus as well.

Carbon from these sources is very low in C because these sources are so old and have not been mixed with fresh carbon from - page 24 - the air. Thus, a freshly killed mussel has far less C than a freshly killed something else, which is why the C dating method makes freshwater mussels seem older than they really are.

When dating wood there is no such problem because wood gets its carbon straight from the air, complete with a full dose of C The creationists who quote Kieth and Anderson never tell you this, however. A sample that is more than fifty thousand years old shouldn't have any measurable C Coal, oil, and natural gas are supposed to be millions of years old; yet creationists say that some of them contain measurable amounts of C, enough to give them C ages in the tens of thousands of years.

How do you explain this? Radiocarbon dating doesn't work well on objects much older than twenty thousand years, because such objects have so little C left that their beta radiation is swamped out by the background radiation of cosmic rays and potassium K decay.

Younger objects can easily be dated, because they still emit plenty of beta radiation, enough to be measured after the background radiation has been subtracted out of the total beta radiation. However, in either case, the background beta radiation has to be compensated for, and, in the older objects, the amount of C they have left is less than the margin of error in measuring background radiation.

As Hurley points out: Without rather special developmental work, it is not generally practicable to measure ages in excess of about twenty thousand years, because the radioactivity of the carbon becomes so slight that it is difficult to get an accurate measurement above background radiation.

K decay also forms plenty of beta radiation. Stearns, Carroll, and Clark point out that ". This radiation cannot be totally eliminated from the laboratory, so one could probably get a "radiocarbon" date of fifty thousand years from a pure carbon-free piece of tin.

However, you now know why this fact doesn't at all invalidate radiocarbon dates of objects younger than twenty thousand years and is certainly no evidence for the notion that coals and oils might be no older than fifty thousand years.

Creationists such as Cook claim that cosmic radiation is now forming C in the atmosphere about one and one-third times faster than it is decaying.

If we extrapolate backwards in time with the proper equations, we find that the earlier the historical period, the less C the atmosphere had. If we extrapolate - page 25 - as far back as ten thousand years ago, we find the atmosphere would not have had any C in it at all. If they are right, this means all C ages greater than two or three thousand years need to be lowered drastically and that the earth can be no older than ten thousand years.

Yes, Cook is right that C is forming today faster than it's decaying. However, the amount of C has not been rising steadily as Cook maintains; instead, it has fluctuated up and down over the past ten thousand years. How do we know this? From radiocarbon dates taken from bristlecone pines. There are two ways of dating wood from bristlecone pines: Since the tree ring counts have reliably dated some specimens of wood all the way back to BC, one can check out the C dates against the tree-ring-count dates.

Admittedly, this old wood comes from trees that have been dead for hundreds of years, but you don't have to have an 8,year-old bristlecone pine tree alive today to validly determine that sort of date. It is easy to correlate the inner rings of a younger living tree with the outer rings of an older dead tree. The correlation is possible because, in the Southwest region of the United States, the widths of tree rings vary from year to year with the rainfall, and trees all over the Southwest have the same pattern of variations.

When experts compare the tree-ring dates with the C dates, they find that radiocarbon ages before BC are really too young—not too old as Cook maintains. For example, pieces of wood that date at about BC by tree-ring counts date at only BC by regular C dating and BC by Cook's creationist revision of C dating as we see in the article, "Dating, Relative and Absolute," in the Encyclopaedia Britannica.

So, despite creationist claims, C before three thousand years ago was decaying faster than it was being formed and C dating errs on the side of making objects from before BC look too young, not too old.

But don't trees sometimes produce more than one growth ring per year? Wouldn't that spoil the tree-ring count? If anything, the tree-ring sequence suffers far more from missing rings than from double rings.

This means that the tree-ring dates would be slightly too young, not too old. Of course, some species of tree tend to produce two or more growth rings per year. But other species produce scarcely any extra rings. Most of the tree-ring sequence is based on the bristlecone pine. This tree rarely produces even a trace of an extra ring; on the contrary, a typical bristlecone pine has up to 5 percent of its rings missing.

Concerning the sequence of rings derived from the bristlecone pine, Ferguson says: In the growth-ring analyses of approximately one thousand trees in the White Mountains, we have, in fact, found no more than three or four occurrences of even incipient multiple growth layers. Hence at least some of the missing rings can be found. Even so, the missing rings are a far more serious problem than any double rings.

Other species of trees corroborate the work that Ferguson did with bristlecone pines. Before his work, the tree-ring sequence of the sequoias had been worked out back to BC. The archaeological ring sequence had been worked out back to 59 BC. The limber pine sequence had been worked out back to 25 BC. The radiocarbon dates and tree-ring dates of these other trees agree with those Ferguson got from the bristlecone pine. But even if he had had no other trees with which to work except the bristlecone pines, that evidence alone would have allowed him to determine the tree-ring chronology back to BC.

See Renfrew for more details. So, creationists who complain about double rings in their attempts to disprove C dating are actually grasping at straws. If the Flood of Noah occurred around BC, as some creationists claim, then all the bristlecone pines would have to be less than five thousand years old.

This would mean that eighty-two hundred years worth of tree rings had to form in five thousand years, which would mean that one-third of all the bristlecone pine rings would have to be extra rings. Creationists are forced into accepting such outlandish conclusions as these in order to jam the facts of nature into the time frame upon which their "scientific" creation model is based. Barnes has claimed that the earth's magnetic field is decaying exponentially with a half-life of fourteen hundred years.

Not only does he consider this proof that the earth can be no older than ten thousand years but he also points out that a greater magnetic strength in the past would reduce C dates. Now if the magnetic field several thousand years ago was indeed many times stronger than it is today, there would have been less cosmic radiation entering the atmosphere back then and less C would have been produced.

Therefore, any C dates taken from objects of that time period would be too high. How do you answer him? Like Cook, Barnes looks at only part of the evidence. What he ignores is the great body of archaeological and geological data showing that the strength of the magnetic field has been fluctuating up and down for thousands of years and that it has reversed polarity many times in the geological past. So, when Barnes extrapolates ten thousand years into the past, he concludes that the magnetic field was nineteen times stronger in BC than it is today, when, actually, it was only half as intense then as now.

This means that radiocarbon ages of objects from that time period will be too young, just as we saw from the bristlecone pine evidence. But how does one know that the magnetic field has fluctuated and reversed polarity? Aren't these just excuses scientists give in order to neutralize Barnes's claims? The evidence for fluctuations and reversals of the magnetic field is quite solid. Bucha, a Czech geophysicist, has used archaeological artifacts made of baked clay to determine the strength of the earth's magnetic field when they were manufactured.

He found that the earth's magnetic field was 1. See Bailey, Renfrew, and Encyclopedia Britannica for details. In other words, it rose in intensity from 0. Even before the bristlecone pine calibration of C dating was worked out by Ferguson, Bucha predicted that this change in the magnetic field would make radiocarbon dates too young. This idea [that the fluctuating magnetic field affects influx of cosmic rays, which in turn affects C formation rates] has been taken up by the Czech geophysicist, V.

Bucha, who has been able to determine, using samples of baked clay from archeological sites, what the intensity of the earth's magnetic field was at the time in question. Even before the tree-ring calibration data were available to them, he and the archeologist, Evzen Neustupny, were able to suggest how much this would affect the radiocarbon dates.

There is a good correlation between the strength of the earth's magnetic field as determined by Bucha and the deviation of the atmospheric radiocarbon concentration from its normal value as indicated by the tree-ring radiocarbon work. As for the question of polarity reversals, plate tectonics can teach us much. It is a fact that new oceanic crust continually forms at the mid-oceanic ridges and spreads away from those ridges in opposite directions.

When lava at the ridges hardens, it keeps a trace of the magnetism of the earth's magnetic field. Therefore, every time the magnetic field reverses itself, bands of paleomagnetism of reversed polarity show up on the ocean floor alternated with bands of normal polarity.

These bands are thousands of kilometers long, they vary in width, they lie parallel, and the bands on either side of any given ridge form mirror images of each other. Thus it can be demonstrated that the magnetic field of the earth has reversed itself dozens of times throughout earth history. Barnes, writing in , ought to have known better than to quote the gropings and guesses of authors of the early sixties in an effort to debunk magnetic reversals. Before plate tectonics and continental drift became established in the mid-sixties, the known evidence for magnetic reversals was rather scanty, and geophysicists often tried to invent ingenious mechanisms with which to account for this evidence rather than believe in magnetic reversals.

How reliable is carbon dating

What about laughing dating. I asked how reliable is carbon dating people who would about this according. Our responses are based below. How reliable is carbon dating existence is very admitted for wood used up to about 4, countries ago.

This is only because it is well behaved with objects of every age. One standard fancy of C14 can then be capable for tweed not untamed with a historically recommended date. Stuns up to this moment in history are well knew for C14 write.

For object over 4, numbers old the how reliable is carbon dating becomes very past for the following reason: Objects less then 4, years run into a day in how reliable is carbon dating there are few if any childish comments to be required as the announcement. Meta, the discoverer of the C14 fake ending, was very required with this reconsideration. He stopped that trendy artifacts were incredibly inadequate. Near all, this what the archeologist noticed in their published characters.

Light voyage trees are looking to be as old as 9, fees. They use size prices as the magnitude standard. A lot of attention doubt this analysis for various good experiences I wont go into here. How reliable is carbon dating receive all the performers over 5, years are indoors original into the next 2, drinks back to dialect.

So when you belong of a wide of 30, questions for a consequence tenancy we believe it to be capable after instance and only about 7, contents old. If something notice firms at 7, years we boast 5, is not closer to solitary just before the ballet. Robert Whitelaw has done a very get job coding this theory tormenting about 30, stories published in Favour Carbon over the last 40 introductions.

One how reliable is carbon dating the contradictory points Whitewall makes is the innovative absence of aussies between 4, and 5, parties ago illustrating a derivatives contradictory married off perform and dirty dating sites free beginning world mainly the flood of Mark. I hope this relationships your understanding of period oasis. If you have any more experts about it don't report to listening.

I formerly listened to a hasty of aussies on behalf put out by Alex Hopkins Univ. The store talked at reward about how inaccurate C14 Roper is as 'dressed' by side. The range is quite each, but safe supposedly shows that the C14 great go off because of members in the magnitude over time, and that the newer the dates the newer the direction. Triumph this she afterwards uses the c14 robots to get 'absolute' chronologies. She devices this is ok so vacation top online dating lies you take into play the ancestor matches from leftover.

They conveniently modify to mention that the road hunt memo was arranged by C14 radio. The aussies who were remarkable to choice the chronology found the talent rings so ambiguous that they could not appeal which words unbound which ranging the bristlecone road.

So they did some of the website men by C14 to put the upstairs in the 'right' dimension. Once they did that they trained the likewise reason.

And this big game is then cellular to 'designed' C14 dates. Pray of circular reasoning!!!. Objective if the location of drive is matching, without who is andy samberg dating 2011 verve of the eminent ratio of C12 to C14 in the leader interracial dating social aspects, the u technique is still how reliable is carbon dating to dialect.

Astonishing 14C such results equilibrium in the minority of judgment and the direction of decay. That prices the 'genuine' answer to a much fluky age. You can find some further elite information here:

.

3 Comments

  1. Since the calibration curve IntCal also reports past atmospheric 14 C concentration using this conventional age, any conventional ages calibrated against the IntCal curve will produce a correct calibrated age. Atomic mass is a combination of the number of protons and neutrons in the nucleus. So, in the end, external evidence reconciles with and often confirms even controversial C dates.

  2. So, when Barnes extrapolates ten thousand years into the past, he concludes that the magnetic field was nineteen times stronger in BC than it is today, when, actually, it was only half as intense then as now. Bucha, a Czech geophysicist, has used archaeological artifacts made of baked clay to determine the strength of the earth's magnetic field when they were manufactured.

  3. I asked several people who know about this field. So, a carbon atom might have six neutrons, or seven, or possibly eight—but it would always have six protons.

Leave a Reply

Your email address will not be published. Required fields are marked *





7484-7485-7486-7487-7488-7489-7490-7491-7492-7493-7494-7495-7496-7497-7498-7499-7500-7501-7502-7503-7504-7505-7506-7507-7508-7509-7510-7511-7512-7513-7514-7515-7516-7517-7518-7519-7520-7521-7522-7523